Partial Encryption of Compressed Images and Videos*

Howard Chengfand Xiaobo Li*
Department of Computing Science
University of Alberta
Edmonton, Alberta, Canada T6G 2H1
Tel: (780) 492-2299 Fax: (780) 492-1071
E-mail: hchcheng@scg.math.uwaterloo.ca
li@cs.ualberta.ca

Abstract

The increased popularity of multimedia applications places a great demand on eflicient data
storage and transmission techniques. Network communication, especially over a wireless net-
work, can easily be intercepted and must be protected from eavesdroppers. Unfortunately, en-
cryption and decryption are slow and it is often difficult, if not impossible, to carry out real-time
secure image and video communication and processing. Methods have been proposed to combine
compression and encryption together to reduce the overall processing time [3, 4, 12, 18, 20], but
they are either insecure or too computationally intensive.

We propose a novel solution, called partial encryption, in which a secure encryption algorithm
is used to encrypt only part of the compressed data. Partial encryption is applied to several
image and video compression algorithms in this paper. Only 13%—27% of the output from
quadtree compression algorithms [13, 17, 29, 30, 31, 32] is encrypted for typical images, and
less than 2% is encrypted for 512 x 512 images compressed by the SPIHT algorithm [26]. The
results are similar for video compression, resulting in a significant reduction in encryption and
decryption time. The proposed partial encryption schemes are fast, secure, and do not reduce

the compression performance of the underlying compression algorithm.

EDICS Number: SP 7.8

*This research is supported in part by the Motorola Wireless Data Group and the Canadian Natural Sciences and
Engineering Research Council under Grant OGP9198 and Postgraduate Scholarship.

"Presently at Department of Computer Science, University of Waterloo.

{ Topwhomycorrespondencesshouldybe addressed.

www.manaraa.com

1 Introduction

The use of image and video applications such as the World Wide Web and video conferencing has
increased dramatically in recent years. When communication bandwidth or storage is limited, data
is often compressed. Especially when a wireless network is used, low bit rate compression algorithms
are needed because of the limited bandwidth. On the other hand, encryption is also performed
if it is necessary to protect the privacy of the users. For example, transmissions over a wireless
network can easily be intercepted. Traditionally, an appropriate compression algorithm is applied
to the multimedia data and its output is encrypted by an independent encryption algorithm. This
process must then be reversed by the decoder.

The processing time for encryption and decryption is a major bottleneck in real-time image
and video communication and processing. Moreover, we must also take into account the process-
ing time required for compression and decompression, for processing the associated audio data,
and for other processing such as video capture and display, contrast adjustment, and so on. The
computational overhead incurred by encryption and decryption algorithms make it impossible to
handle the tremendous amount of data processed. For example, MPEG-2 compression produces
output at a bit rate of 10 Mb/s or higher [21]. Compression algorithms for high-quality video
sequences may generate even higher bit rates. In many cases, compression and decompression
algorithms can barely keep up with the required bit rate even when they are accelerated by hard-
ware. The additional processing required by encryption and decryption makes real-time secure
video communication and processing difficult, if not impossible. While hardware acceleration for
encryption exists, software implementations are cheaper and more flexible. This is especially true
for small, portable devices such as hand-held “videophones.” Extra hardware may increase the cost
of production, the size, and the power consumption of the device. A reduction in processing time
and computational requirement is important not only for these portable devices, but also for more
powerful computers.

Other researchers have also found inadequacies in the current state of the art in the area of
secure image and video communication. Matias and Shamir [20] argued that standard cryptographic

techniques are inadequate for video signals for the following reasons:

1. the transmitted signal is analog;

www.manaraa.com

2. the transmission rate is very high;
3. the allowable bandwidth is limited.

While the first reason is no longer applicable as digital video has become feasible, the other two
reasons remain valid. Chang and Liu [4] recently noted that it is still difficult to perform both
compression and encryption quickly. Researchers have proposed methods to combine compression
and encryption into a single process to reduce the total processing time [3, 4, 12, 18, 20], but these
methods are insecure or too computationally intensive. To the best of the authors’ knowledge,
there has been no satisfactory solution proposed.

We propose a novel approach, called partial encryption, to reduce encryption and decryp-
tion time in image and video communication and processing. In this approach, only part of
the compressed data is encrypted. It was shown in [5, 6] that this approach is not suitable for
the JPEG [24] and MPEG [21] compression algorithms. Instead, we propose partial encryption
schemes for quadtree and wavelet image compression, as well as an extension for video compres-
sion. Partial encryption allows the encryption and decryption time to be significantly reduced
without affecting the compression performance of the underlying compression algorithm. It will
also be shown that although a large portion of the compressed data is left unencrypted, it is difficult
to recover the original data without decrypting the encrypted part. In the case of quadtree image
compression [13, 17, 29, 30, 31, 32], the encrypted portion is 13%—27% of the compressed output for
typical images. For wavelet compression based on zerotrees [8, 13, 14, 26, 28], less than 2% of the
compressed output is encrypted for 512 x 512 images. Applications using low bit rate compression
algorithms would result in smaller portions to be encrypted, making the partial encryption scheme
even more feasible and attractive. The results on video compression is similar. Thus, a significant
reduction in encryption and decryption time is achieved. In fact, the encrypted part may be so
small that public-key encryption can be applied directly, so that the implementation and operat-
ing costs of secret-key encryption are eliminated. Moreover, there are other potential applications
of partial encryption. Partial encryption was first applied to quadtree image compression by the
authors in [6, 17], and there is no known cryptanalysis at this time.

The partial encryption approach and its potential applications are described in more detail in

Section 2. In Section 3, quadtree image compression and wavelet compression based on zerotrees are

www.manaraa.com

briefly described to facilitate the discussion of the proposed schemes. In Section 4, the inadequacies
of related algorithms are summarized. Partial encryption schemes for images are proposed and

analyzed in Section 5, and an extension for videos is examined in Section 6.

2 Partial Encryption Based on Data Decomposition

Many compression algorithms for multimedia data decompose their input into a number of different
logical parts. For example, region-based image and video compression produces the shapes and lo-
cations of the regions as well as the parameters describing the regions. Transform coding algorithms
such as those given by the Joint Photographic Experts Group (JPEG) [24] and the Moving Picture
Experts Group (MPEG) [21] produce coefficients corresponding to the chosen basis functions that
represent components of different frequencies. Some of these algorithms have important parts that
provide a significant amount of information about the original data, while the remaining parts may
not provide much information without the important parts. For simplicity, we consider all impor-
tant parts as one important part, and the remaining parts are grouped into one unimportant part.
We use the term “information” loosely in this paper, not referring to the concept of information
defined mathematically by information theory. If a part can be used to reconstruct, approximate,
or recognize the original data, we say that it provides a significant amount of information.

Since it is difficult to obtain information from the unimportant part alone, we propose a partial
encryption approach in which only the important part is encrypted. A secure encryption algorithm
is used to encrypt the important part. Figure 1 illustrates the difference between the proposed
approach and the traditional approach, in which the entire output of the compression algorithm is
encrypted. A significant reduction in encryption and decryption time is achieved when the relative
size of the important part is small. Real-time secure video communication and processing are often
impossible without the reduction. In some cases, partial encryption allows the important part to
be encrypted while the unimportant part is transmitted in parallel, so that the encryption time
becomes negligible. Moreover, partial encryption preserves a desirable property possessed by the
traditional approach—the encryption and decryption time for highly compressible input sources
remains low. Other related algorithms [3, 4, 12, 18, 20] do not possess this property.

In secure communication, a secret-key encryption algorithm such as IDEA [16] is typically used

www.manaraa.com

Encryption [I mportant Part] [Unimportant Part]

Encryption

——

Channel Channel

i

i

@ § ()

Figure 1: A comparison between (a) the traditional approach to secure image and video communi-

cation and (b) the proposed approach.

to encrypt the transmission, and the secret key is encrypted by a public-key encryption algorithm
such as the RSA algorithm [25]. Public-key algorithms are used to solve the problem of key
exchange, but they are too slow for encrypting a large amount of data. Consequently, they are
not used to encrypt the actual message. In partial encryption schemes, the important part can
be encrypted by a secret-key algorithm as described above. However, the important part may be
so small that public-key algorithms can be applied directly to it, making secret-key encryption
unnecessary. This is illustrated in Figure 2. The implementation and operation costs for secret-key
encryption are completely eliminated in this case.

Partial encryption can also be viewed as a way to prioritize information, with the additional
constraint that the unimportant part alone does not reveal much information about the original
data. The important part often gives important visual information about an image as well. For
example, we will show in Section b that the important part in quadtree compression algorithms
shows the outlines of objects in an image. We may allocate more bandwidth for the important
part or pay more attention to the important part in error-detection or error-correction coding, so
that some visual information of the image can be obtained even if the unimportant part is totally
lost. This approach may also be used for progressive transmission, such that the important part is

transmitted first and the unimportant part is transmitted only if necessary.

www.manaraa.com

Input Input

Compression [I mpor tant Part]<—{ Compron‘

Unimportant Part

: Public-key
Public K
Encryption

ot

| |
! "

s

(@) | (b)

Figure 2: A comparison between (a) the traditional approach to secure image and video commu-
nication and (b) the proposed approach when public-key encryption can be applied directly to the

important part.

Data decomposition and partial encryption have other applications such as distributed secure
image and video retrieval and real-time secure broadcasting, respectively. In distributed image and
video retrieval, the important parts are small and can be stored locally in a catalogue. When an
image or a video is desired, only the unimportant part needs to be transmitted; hence, encryption
is totally eliminated without compromising security. In real-time secure broadcasting, the trans-
mission to each user may have to be encrypted with a different key to protect the privacy of the
users. This “personalized” encryption is infeasible without the reduction in encryption time offered
by partial encryption.

Compression algorithms generally attempt to decompose their input into statistically uncorre-
lated parts to facilitate efficient encoding. If we separate the important part and the unimportant
part based on these decompositions, the two parts will be almost uncorrelated. Although the two
parts may still be statistically dependent, it may not be easy to take advantage of the dependence
in an attack. As a result, if the encrypted important part and the unimportant part are known,
ciphertext-only attacks on our scheme may not be significantly easier than ciphertext-only attacks
on the chosen encryption algorithm. Known-plaintext and chosen-plaintext attacks on our scheme

aresasydifficultyas, thesejonstheschosen encryption algorithm because the knowledge of the unimpor-

www.manaraa.com

tant part does not alter the probability of a key being the correct one. Part of this work has been
published for two years [6, 17], and no attacks have been found.

Finally, the proposed approach is a technique that can be applied to many tree-based compres-
sion algorithms. As compression technology advances, we may apply this technique to the new
algorithms proposed. Our approach is general, and it is not limited by the current technology in

compression.

3 Background

In this section, we briefly introduce cryptography, quadtree image compression, and wavelet im-
age compression based on zerotrees to facilitate the discussion of the proposed partial encryption
schemes. It is assumed that input images have been extended such that their dimensions are 2™ x 2"

for some n > 0.

3.1 Cryptography

Cryptography is the study of keeping messages secure. The original message is called the plaintezt,
while the encrypted message is called the ciphertext. Cryptanalysis is the study of breaking en-
cryption algorithms. It is assumed that the cryptanalysts have full access to the description of the
algorithms, as well as full access to the insecure channel in which a message is transmitted. Secure

encryption algorithms must withstand the following types of attacks:

Ciphertext-only attack. The cryptanalyst has access to the ciphertext of several messages en-
crypted with the same key. The cryptanalyst attempts to recover the corresponding plaintext

or the encryption key.

Known-plaintext attack. The cryptanalyst has access to the ciphertext and the corresponding
plaintext for several messages encrypted with the same key. The cryptanalyst attempts to
recover the key or to design an algorithm to decrypt any messages encrypted with the same

key.

Chosen-plaintext attack. In this case, the cryptanalyst is allowed to choose the plaintext that

is encrypted, and observe the corresponding ciphertext. The cryptanalyst’s goal is the same

www.manaraa.com

as that in a known-plaintext attack.

Exhaustive key search. The cryptanalyst tests each of the possible keys one at a time until
the correct plaintext is recognized. This attack can be combined with any one of the three

previous attacks to reduce the number of possible keys.

3.2 Quadtree Image Compression

Many variations of quadtree image compression algorithms exist [13, 17, 29, 30, 31, 32], and we
only describe the basic concept here. Although more powerful compression algorithms exist, the
computational complexity of quadtree compression is very low and it performs better than the
JPEG algorithm at low bit rates [13, 17]. It is especially suitable for portable devices that may not
have too much computing power.

A quadtree is a rooted tree in which every node has 0 or 4 children, while a j-ary tree is a
rooted tree in which every node has at most 4 children. Nodes with children are called internal
nodes, while those without any children are called leaf nodes. For each node in a tree, we define its
level to be the number of edges in the shortest path from the node to the root. The height of the
tree is defined to be the maximum of the levels of its nodes. Thus, a node at a low level is close to
the root.

In lossless compression, the algorithm starts with a tree with one node. If the entire image is
homogeneous, the root node is made a leaf and the gray level describing the entire image is attached
to the leaf. Otherwise, the image is partitioned into four quadrants and four corresponding children
are added to the root of the tree. The algorithm then recursively examines each quadrant, using
each of the four children as the root of a new subtree. The lossy version is similar to the lossless
counterpart, but the test for homogeneity of a square block is replaced by a test for similarity.
The similarity of the pixels in a block can be measured by the variance of the pixel values, texture
information, and other kinds of statistics. The values attached to the leaf nodes are parameters
that describe the block. Some examples of the parameters are average gray level and parameters
for a first-order model [31].

Quadtree compression can be implemented in either a top-down or a bottom-up fashion. The

description given above corresponds to a top-down implementation. In a bottom-up implementa-

www.manaraa.com

LL3|LH3
LH2
HL3|HH3
LH1
HL2 HH2
HL1 HH1

Figure 3: The hierarchy of wavelet coefficient bands.

tion, the algorithm starts with a complete quadtree of height n. The highest level of the quadtree
is first examined, and four sibling leaf nodes are merged if they are homogeneous or similar. This
is repeated at the next highest level until there are no leaf nodes at a level, or if the root is reached.

In practice, a bottom-up implementation is often preferred because it is more efficient.

3.3 Zerotree Wavelet Image Compression

The wavelet transform has been successfully applied to many image compression algorithms [1, 8,
13, 14, 26, 28]. It creates a hierarchy of coefficient bands, sometimes called a pyramid decomposition,
as shown in Figure 3. The number in the band label is the pyramid level of the band. The LL
band at the highest pyramid level is called the root level. It is assumed that wavelet transform is
performed such that the root level has dimensions 8 x 8.

There is often correlation between coefficients that are in different pyramid levels of the hi-
erarchy. Compression algorithms based on zerotrees [8, 13, 14, 26, 28] take advantage of this by
grouping insignificant coeflicients together into zerotrees, and indicate the insignificance of these
coeflicients very efficiently. We focus on the Set Partitioning in Hierarchical Trees (SPIHT) algo-
rithm [26] in this paper because it is the basis of many other similar algorithms. In the SPTHT
algorithm, each 2 x 2 block of coeflicients in the root level corresponds to three trees of coefficients,
as shown in Figure 4. The coefficient at (¢, 7) is denoted as ¢; ;. The following sets of coefficients

are defined:
e O(i,j): the set of coordinates of the children of the coeflicient at (z, j);

e D(i,7): the set of coordinates of all descendants of the coefficient at (¢, 7);

www.manaraa.com

Figure 4: The trees of wavelet coefficients.

e H: the set of coordinates of all coefficients in the root level;
e L(¢,7)=D(,7) — O, j).

Given a threshold T' = 27, a set of coefficients .S is significant if there is a coefficient in S whose

magnitude is at least 7. We define the function

1 if S is significant with respect to T' = 2",
Sn(S) =

0 otherwise.
For convenience, S,({(¢,7)}) is simply denoted as S,(¢,j). Three lists are maintained by the
algorithm: the list of insignificant sets (LIS), the list of insignificant pixels (LIP), and the list of
significant pixels (LSP). The LIS contains two types of entries, representing the sets D(%, j) and
L(¢,7). The LIP is a list of insignificant coefficients that do not belong to any of the sets in the
LIS. The LSP is a list of coefficients that have been identified as significant.

The SPIHT algorithm encodes the wavelet coefficients by selecting a threshold such that 7' <
max(; ;) |ci ;| < 2T, where (, j) ranges over all coordinates in the coefficient matrix. Initially, the
LIP contains the coefficients in H, the LIS contains D(%, j) entries where (¢, j) are coordinates with
descendants in H, and LSP is empty. During the sorting pass, the significant coefficients in the LIS
are identified by partitioning the sets D(4, 7) into £(%, 7) and the individual coefficients in O(,), or
L(¢,7) into D(k, 1) where (k,I) € O(3, j). Each significant coefficient is moved to the LSP. During
the refinement pass, all coefficients in LSP that have been identified as significant in previous passes

are then refined in a way similar to binary search. The threshold is decreased by a factor of two,

10

www.manaraa.com

and the above steps are repeated. The encoding process stops when the desired bit rate is reached.
The output is fully embedded, so that the output at a higher bit rate contains the output at all lower
bit rates embedded at the beginning of the data stream. A complete description of the algorithm

can be found in [26].

4 Related Algorithms

Related algorithms have been proposed by other authors to combine compression and encryption [3,
4, 12, 18, 20]. The inadequacies of these algorithms are summarized here, and a more detailed
analysis of these algorithms can be found in [5].

Jones [12] observed that in adaptive Huffman coding [10] and arithmetic coding [34], errors in
the first few bits of the encoded data may destroy the synchronization between the encoder and
the decoder, making the remaining data unrecoverable. He suggested that an adaptive compression
algorithm can be used as an encryption algorithm if the initial model is kept secret. The key is a
string of symbols that is encoded before the encoding or decoding of the actual message. Thus, the
initial model is determined by the symbols in the key. On Jones’ World Wide Web home page [11],
it is stated that this algorithm is vulnerable to chosen-plaintext attacks—there are sequences of
input symbols that can expose the current state of the model.

Liu et al. [18] recently proposed an algorithm that combines encryption and adaptive arithmetic
coding. In addition to concealing the initial parameters of the algorithm as in Jones’ proposal, it
also performs secret adjustments to the current interval after each symbol is coded. The low end of
the interval is increased by multiplying by a secret multiplier of the form 1.0%** and the high end
is decreased by multiplying by a secret multiplier of the form 0.9***. Two pairs of multipliers are
available, and the choice of the pair depends on a separate secret bit string. The authors claimed
that the algorithm has many desirable properties for security, such as diffusion and the randomness
of output. However, their experimental results show that the algorithm is approximately twice
as slow as the original arithmetic coding algorithm by Witten et al. [34], and the compression
performance is 2% worse than that of the original algorithm. Note that the extra operations
required by the secret adjustments are applied for every symbol encoded, so the overhead is high

even for an input source with low entropy.

11

www.manaraa.com

Matias and Shamir [20] proposed a video encryption algorithm in which each frame is scrambled
by a secret space-filling curve. Algorithms are available for compressing the scrambled signal [22,
23, 33]. Bertilsson et al. [2] gave a ciphertext-only attack that takes advantage of the temporal
correlation among consecutive frames. If a different space-filling curve is used for each frame and
there is little or no motion in the frames, the scrambled output from the different space-filling
curves can be used to recover many pieces of the frames. In addition, this algorithm is simply a
transposition cipher, and so it is vulnerable to known-plaintext and chosen-plaintext attacks [5].

Bourbakis and Alexopoulos [3] proposed another image encryption algorithm that scrambles an
image using hierarchical scan patterns defined by the SCAN language. A substitution is performed
on each pixel based on an additive noise vector that is part of the key. Compression may be
performed by techniques such as run-length encoding. The number of distinct SCAN patterns is
small and substitutions must be performed to withstand attacks by exhaustive key search [5]. For
example, the number of SCAN patterns for an image of dimensions 512 x 512 is only 6.617867 x
1019 [3], which is less than 23¢. Furthermore, the substitutions can be completely determined by
a chosen-plaintext attack using only one encryption [5]. The same chosen-plaintext attack may be
used to determine the hierarchical decomposition specified by the key.

Chang and Liu [4] recently proposed an image compression and encryption algorithm based
on lossless quadtree image compression. A permutation, or scanning order, is applied to the four
branches at each internal node of the quadtree. The encryption key specifies the scanning order
at each node. This algorithm does not appear to be practical because the length of the key is
[log,(24)(4™ — 1)/3] bits for an image of dimensions 2" X 2", so that the key length is linear in the

size of the image. In addition, numerous attacks on this algorithm are available [5]:

Key space reduction. Many keys produce identical output on the same input image. The effec-

tive key space is dramatically reduced.

Histogram attacks. The image histogram of the original image is preserved in the output, re-
vealing the average intensity of the image. This can be used to obtain a reconstruction of

resolution 2* x 2* by determining only the scanning orders used at the first k levels.

Known-plaintext attack. Pixels in the same quadrant in the original image are also in the same

gquadrantzinsthesoutput=nA signature that is invariant under the scanning orders used can

12

www.manaraa.com

be computed for each subtree, and the correspondence between the quadrants in the original
image and the encrypted image can be determined. Consequently, the number of possible

keys is reduced dramatically.

Chosen-plaintext attack. A very efficient chosen-plaintext attack can be performed by generat-
ing input images in which as many subtrees as possible have unique signatures. By applying
the known-plaintext attack, the encryption key for 8-bit images of dimensions 512 x 512 can

be recovered using only three encryptions.

The related algorithms described above are either insecure or too computationally intensive.
We conclude that none of them satisfactorily solves the problem of reducing the overall compression

and encryption processing time.

5 Partial Encryption of Images

Partial encryption of images is examined in this section. This approach cannot be blindly applied to
any compression algorithm, and each proposed scheme must be evaluated carefully. For example, it
was shown in [5, 6] that encrypting only low-frequency coefficients in transform-based compression
such as JPEG [24] is inappropriate for partial encryption. The encrypted part is more than 50%
of the total size of the compressed image, and outlines of objects are revealed.

We have found two classes of algorithms that are suitable for partial encryption. Quadtree
compression algorithms [13, 17, 29, 30, 31, 32] are computationally simple and outperform JPEG
at low bit rates [13, 17]. Wavelet compression algorithms based on zerotrees [8, 13, 14, 26, 28] have
good compression performance. Both types of algorithms are suitable for low bit rate applications,
and partial encryption schemes for them are proposed. The relative size of the important part,
the computational complexity, and the security of each scheme are then analyzed. The size of the
important part compared to the total size of the compressed image is directly proportional to the
amount of encryption and decryption time required. Experimental results are obtained from an

extensive set of test images that are commonly used by other researchers.

13

www.manaraa.com

H

Her
Hee

T
et
I
T

T
Ere

s2=
e e

+m“
z
P
+
P
HeE]
]
e
5
=
s gunn
HEFer

T
e

i
EEre

e

e

g‘zz
g

AT

]
HH

(a) Original image (b) Quadtree decomposition
Figure 5: Quadtree decomposition of an image.

5.1 Quadtree Compression

In quadtree image compression, two logical parts are produced—the quadtree and the parameters
describing each block. We focus on the case in which the only parameter used to describe each
block is the average intensity. Similar arguments apply to other types of parameters such as
texture information or parameters for a first-order model [31]. The quadtree decomposition provides
outlines of objects in the original image, as illustrated in Figure 5. On the other hand, having only
the intensity of each block does not allow us to learn much about the original image, as the location
and size of each block are unknown. We propose a partial encryption scheme in which only the
quadtree structure is encrypted. We refer to the block intensities as the leaf values, as each intensity
corresponds to a leaf node in the quadtree. Clearly, the compression performance is unaffected.
The quadtree partial encryption scheme can be used for both lossless compression and lossy
compression. In lossless quadtree compression, each leaf value is represented by the same number of
bits. In lossy compression, however, the number of bits used to represent each leaf value is different.
When a block is large, it is important to accurately represent its intensity. We concentrate on the

bit allocation used by Shusterman and Feder [29]:

1 cri2L
b = ; log (4iD), (1)

where b; is the number of bits used to represent each leaf value at level ¢, ¢ is the variance of the

leaf valuessatileveléydnissthestotal number of leaf nodes in the quadtree (denoted Ly in [29]), and

14

www.manaraa.com

T

Figure 6: An example quadtree for a binary image.

D is a constant specified by the user to control the bit rate. It is important that the decoder also
has the b; values in order to separate the individual leaf values. Since the bit allocation can be
represented by very few bits, it is also included in the encrypted part.

The leaf values must be transmitted in some order, and two orderings of the leaf values are
introduced. The quadtree in Figure 6 is used to illustrate the orderings in the description below.
We assume that the four branches of each node in the quadtree correspond to the NW, SW, SE,
and NE quadrants in this order. We also assume that a black leaf node has a leaf value of 1, and
a white leaf node has a leaf value of 0.

The first leaf values ordering, Leaf Ordering I, is induced by the inorder traversal of the
quadtree [15]. In this ordering, the leaf values are encoded as 0010011011110010. In Leaf Or-
dering II, the leaf values are encoded one level at a time from the highest level to the lowest level,
since this ordering is natural for bottom-up quadtree construction. This is opposite to breadth-first
traversal of the tree, in which leaf values are concatenated from the lowest level to the highest level.
At each level, the blocks corresponding to the leaf values are ordered by the raster scan—each row
of blocks is ordered left to right, and the rows are ordered from top to bottom. The leaf values
are ordered according to the order of the corresponding blocks. The leaf values of the levels are
concatenated, and no special encoding is needed to separate each level if the quadtree is also known.
Thus, the final encoded output is 1111000001100101. A more detailed example can be found in [5].

It will be shown that certain properties possessed by Leaf Ordering I make it susceptible to
cryptanalysis. These properties are not present in Leaf Ordering II, making it much more difficult
to cryptanalyze. Leaf Ordering I is not secure; it is presented to illustrate that the structure of the
unimportant part must be considered in designing partial encryption schemes.

Several properties of quadtrees are needed in the analysis of the quadtree partial encryption

schemesMany of theseresultssare generalized from the results and exercises for binary trees given

15

www.manaraa.com

in Section 2.3 of [15]. The proofs are omitted here for brevity.

Lemma 1 A non-empty quadtree has 4k + 1 nodes where k is a non-negative integer. In addition,

it has k internal nodes, and 3k + 1 leaf nodes.

Theorem 2 There is a one-to-one correspondence between quadtrees having 4k + 1 nodes and a

height of h+ 1 and 4-ary trees having k nodes and a height of h.

Corollary 3 The number of quadtrees having 3k + 1 leaf nodes and a mazimum height of h+ 1 is

the same as the number of J-ary trees having k nodes and a mazimum height of h.

Let ajj denote the number of quadtrees having 3k 4 1 leaf nodes and a maximum height of
h 4 1. The following theorem provides a way to calculate a5, and it is similar to the analysis of

general trees found in [9].

Theorem 4 Let g,(z) = 3, arn2" be the generating function of ay, for a fized h. Then,

1+z ifh=0,
gn(z) = (2)

14 z(gn-1(2))* fh>0.
Proof. The theorem follows directly from Corollary 3 and induction on h. a
Each node of the quadtree is either an internal node or a leaf node. Thus, a quadtree may
be represented by one bit per node. In fact, nodes corresponding to 1 X 1 blocks need not be
represented at all. To simplify the calculations, we assume that the quadtree is represented by
one bit for each node to obtain upper bounds on the quadtree size. By Lemma 1, the size of the
quadtree is 4k + 1 bits, 3k + 1 of which correspond to leaf nodes. In the case of lossless compression
on a b-bit image (i.e., each pixel may assume one of 2® possible intensity levels), the total size of the
leaf values is b(3k + 1) bits. It follows that an approximate upper bound on the relative quadtree
size, defined as the ratio of the size of the quadtree and the total size of the compressed image, is

4k +1 A+ 4
4k +1+b(33k+1) 3b4 4401 7 3b+4

or (400/(3b+ 4))%. The approximation is valid since k is typically at least 1000 for 256 x 256

images, and greater for larger images. Table 1 shows the upper bounds for various values of b.

16

www.manaraa.com

Table 1: Approximate upper bounds on the relative quadtree size in lossless quadtree compression
on b-bit images.

b 1 2 3 4 5 6 7 8
Quadtree Size (%) | 57.1% | 40.0% | 30.8% | 25.0% | 21.1% | 18.2% | 16.0% | 14.3%

For lossy compression, the situation is more complicated because the number of bits used for
each leaf value is different. We see from (1) that the relative quadtree size is small if there are many
leaf nodes at low levels. It is difficult to analyze the size of the quadtree without the knowledge of
the bit allocation as well as the distribution of leaf nodes among the different levels. Table 2 shows
the results obtained from test images. The results show that the relative quadtree size of all but
one image is between 13%—-27%. The only exception is the “washsat” image, which has a relative
quadtree size of 56.1%. The reason is that “washsat” is a low-contrast image, so that the values o
in (1) are small. Hence, many leaf values are represented by only one bit. This is also the reason
for the low bit rate achieved by the compression algorithm.

The analysis is similar when other parameters are used to describe the blocks associated with
the leaf nodes. For example, Strobach [31] used the three parameters a, b, ¢ to describe each block
by the first-order model f(z,y) = a + bz + cy. The number of bits used to represent each set of
parameters can be used to predict the quadtree size. It was shown in [31] that at approximately
0.5 bpp, the quadtree is 11.7% for the “boat” image, and 8.4% for the “lena” image.

Quadtree partial encryption is secure against attacks by tree enumeration, in which the crypt-
analyst generates all possible quadtrees and matches them against the unencrypted leaf values.
For an image of dimensions 2" X 2", the maximum height of the quadtree is n. In the case of
lossless compression, the number of leaf nodes in the quadtree can be obtained. In the case of
lossy compression, the number of leaf nodes may not be known exactly, but we may be successful
in determining a range of possible values. If the number of leaf nodes is L, the number of such
quadtrees is aj j, where k = (L —1)/3 and h = n — 1. The values log, aj 5, can be computed by the
recurrence relation in Theorem 4, and are plotted for A = 4,5, 6 in Figure 7. Unless k is very small
or very large, the number of possible quadtrees is very large even for low-resolution images. As
a result, exhaustive tree enumeration is infeasible unless the quadtree is almost empty or almost

complete.. This does not.occur for typical images [5].

17

www.manaraa.com

Table 2: Relative quadtree size in lossy quadtree compression.

Image | Dimensions | bpp | Quadtree Size (bytes) | Quadtree Size (%)
airfield 512 x 512 1.323 6244 14.4%
airplane | 512 x 512 | 0.530 3601 20.7%
barbara 512 x 512 1.210 5524 13.9%
bay 256 x 256 0.933 1371 17.9%
bird 256 x 256 0.370 643 21.2%
boat 512 x 512 0.673 4352 19.7%
bridge 256 x 256 1.826 2178 14.6%
camera 256 x 256 0.877 1035 14.4%
couple 512 x 512 | 0.956 5064 16.2%
crowd 512 x 512 | 0.813 5232 19.6%
festung | 512 x 512 | 0.655 3922 18.3%
goldhill 512 x 512 0.631 4825 23.3%
io 512 x 512 0.784 4188 16.3%
lax 512 x 512 1.155 6331 16.7%
lena 512 x 512 0.547 3537 19.7%
man 512 x 512 0.852 4974 17.8%
mandrill | 512 x 512 | 1.913 8168 13.0%
peppers | 512 x 512 | 0.516 3388 20.0%
sailboat 512 x 512 0.671 4621 21.0%
shepherd | 512 x 512 | 1.502 7083 14.4%
sunset 256 x 256 | 0.542 859 19.4%
washsat | 512 x 512 | 0.132 2420 56.1%
womanl | 512 x 512 | 0.757 4186 16.9%
woman?2 | 512 x 512 | 0.296 2290 23.6%
zelda 512 x 512 0.344 3027 26.8%

The partial encryption scheme based on lossless quadtree compression using Leaf Ordering I

has two properties that facilitate cryptanalysis. First, the leaf values for sibling nodes are close

together in the encoded leaf values. Moreover, the number of bits used for each leaf value is fixed,

so that it is easy to separate the encoded data into individual leaf values. Let us assume that the

four branches of a node correspond to the NW, SW, SE, and NE quadrants. It follows that the

first leaf value corresponds to a block containing the NW corner of the image, and the last leaf

value corresponds to a block containing the NE corner of the image.

A run, or a sequence of identical leaf values, in the encoded data can be used in cryptanalysis.

An important property of the encoded data is that four leaf values in a run cannot correspond

to sibling nodes; otherwise, they would have been merged into one single node. In Figure 8, a

18

www.manaraa.com

Number of Quadtrees of Maximum Height 5

300 I I I
250
200
logy ara 150
100 -
50 |

0 ! ! !

0 100 200 300
k

Number of Quadtrees of Maximum Height 6
1000
800
log, ars 600 -
400 -
200 -

0 ! ! !

0 400 800 1200
k

Number of Quadtrees of Maximum Height 7

4000
3000 -
loga aks 9999
1000

0 ! ! !
0 1500 3000 4500
k

Figure 7: Plots of log, a;, , for various values of h.

quadtree with a run of length 14 is shown. Notice that the levels of the leaf nodes in this run do
not change direction (decreasing or increasing) many times. This follows from the fact that once
the levels start increasing, they cannot decrease until four sibling leaf nodes are encountered in the
run, which is impossible. As a result, long runs reduce the number of quadtrees that need to be
examined in an exhaustive search.

Moreover, a homogeneous region can be recovered from a long run that starts at a NW leaf
node. Let k be the length of the run starting at a NW leaf node of some subtree, and r be the leaf

value in this run. A homogeneous region can be recovered as follows:

1. Set ¢ =1, and set (z,y) to the coordinates of the NW pixel of the block represented by this

subtree.

2. While 7 < k do

19

www.manaraa.com

ﬁ -

Figure 8: A quadtree with a run of length 14.

(a) Write r into the image location at (2, y).

(b) If (z,y) is a NE corner of some quadrant, then the values in the quadrant should be

merged. If the dimensions of the merged quadrant is 2™ x 2™, then set ¢ = { — 3m.

(c) Set (z,y) to the next image location using the ordering NW, SW, SE, NE. That is, the

next pixel location visited by an inorder traversal of the complete quadtree.

(d) Seti=i+1.

A similar procedure can be given for runs that end at a NE leaf node. It may be difficult to
classify the leaf nodes corresponding to the start and the end of a run in general. However, the
above procedure can be applied to the runs at the start (end) of the encoded leaf values, since
the run starts at a NW leaf node (ends at a NE leaf node). This procedure can also be used in a
known-plaintext attack. If a known non-homogeneous image portion is encoded as a subtree of the
quadtree for the original image, quadtree compression can be applied to this portion to obtain the
leaf values, which forms a substring of the leaf values of the entire image. The above procedure
can then be used on runs before and after the substring to extend the known image portion.
Although the start and the end of a run may not be classified, we may still obtain information
about the leaf values in a run. Assume that we are given a run of length k. We can determine the

minimum dimensions of the blocks represented by the leaf values in the run as follows:
1. Seti=k%k, 7 =0.
2. While 2 > 0 do

(a) There are min(¢, 6) leaf values in the run corresponding to blocks of minimum dimensions
29 % 27,
(b)Setri-=i— Byt 1.
20

www.manaraa.com

The only situation in which we obtain the true dimensions of the blocks occurs when the quadtree
is skewed both to the left and to the right, but is empty in the middle. An example is given in
Figure 8. The statistics obtained from this procedure may be used to estimate the image size, the
compression ratio, and the image histogram.

Although the above attacks cannot be used to obtain the entire image, we do not recommend
using Leaf Ordering I for lossless compression. Long runs may be used to obtain homogeneous
regions at the corners and may reveal the shapes of foreground objects.

In the case of lossy compression using Leaf Ordering I, it is crucial that the individual leaf
values cannot be obtained from the concatenated bit stream without the quadtree. If the non-
zero bit allocation for each level is distinct and the individual leaf values are obtained, we can
determine the level at which each leaf value is located. As a result, the quadtree can be completely
determined [5]. Together with the undesirable property of Leaf Ordering I that the leaf values of
sibling nodes are close together, we conclude that Leaf Ordering I should not be used in our partial
encryption scheme for lossy compression as well.

Leaf Ordering II is secure when used in either lossless compression and lossy compression. In the
case of lossless compression, leaf values of sibling nodes may be far apart. In fact, the number of leaf
values between the leaf values of two sibling nodes may be as many as the number of possible blocks
in a row. It is more difficult to use the property that four sibling nodes must have different leaf
values. The first and last leaf values do not correspond to fixed pixels in the image. Furthermore,
the compressed output of a known image portion is generally not a substring of the leaf values of
the entire image, so that the known portion cannot be extended. In the case of lossy compression,
Leaf Ordering II allows the individual leaf values to be separated without compromising security.
The same attack based on bit allocation only gives the number of leaf nodes at each level, and the
number of possible quadtrees is large even with this extra information [5].

Leaf Ordering II can easily be used in a bottom-up implementation of the quadtree image
compression algorithm. At each level, the leaf nodes are examined for merging in the spatial order
described by Leaf Ordering II. If a leaf node is not merged with its siblings, then the leaf value is
transmitted. Since the algorithm must examine the leaf nodes at each level in some order, there
is little computational difference among the different orders. Thus, the computational overhead of

using-quadtree-partial-encryption is negligible.

21

www.manaraa.com

5.2 Zerotrees Wavelet Compression

Wavelet compression algorithms based on zerotrees generally transmit the structure of the zerotrees
in addition to the significant coefficients. For example, the Set Partitioning in Hierarchical Trees
(SPIHT) compression algorithm [26] transmits the significance of the coefficient sets that correspond
to trees of coefficients. This is similar to quadtree compression as it indicates whether a set needs
to be decomposed further. Instead of homogeneity, significance is the factor for deciding whether
a set is partitioned. We focus on the SPIHT compression algorithm in the discussion, but other
algorithms based on zerotrees can also be used [8, 13, 14, 28].

The SPIHT algorithm uses the significance information of sets to determine the tree structures,
and the execution of the algorithm depends strongly on the structure of the zerotrees. Even if
a small amount of significance information at the beginning of the encoded data is incorrect, the
algorithm cannot decode the image correctly [7, 26]. The compression algorithm produces many
different types of bits—sign bits, refinement bits, significance of pixels, and significance of sets. The
decompression algorithm must interpret each bit under the correct context. Incorrect significance
bits may cause future bits to be misinterpreted, while incorrect sign bits or refinement bits do not.
We propose a partial encryption scheme that encrypts only the significance information related
to pixels or sets in the two highest pyramid levels, as well as the parameter n that determines
the initial threshold. Formally, we encrypt the significance information S,,(%,7), Sn(D(%,j)), and
Sn(L(,7)) if and only if (¢, 5) is in the two highest pyramid levels. If the root level has dimensions
8 x 8, then the significance information is encrypted if and only if 0 < 4, < 16. The compression
performance of the algorithm is unaffected.

We do not encrypt all significance information because the pixels and sets in other levels are
produced by decomposing sets in the two highest pyramid levels. The states of the three lists LIP,
LIS, and LSP are constantly updated by the algorithm, and the significance information is used
to determine the way in which the lists are updated. If the states of the lists are incorrect at the
beginning of the algorithm, it is difficult for the algorithm to recover from the error. Our goal
is to encrypt enough of the significance information so that it is difficult for the cryptanalyst to
determine the meaning of each unencrypted bit.

The following result is proved in [5]:

22

www.manaraa.com

Table 3: The size of important part in the SPIHT algorithm.

0.80 bpp 0.60 bpp 0.40 bpp

Image | Dimensions | Bits | % | Bits | % | Bits | %
airfield 512 x 512 | 16563 | 0.8% | 16563 | 1.1% | 1642 | 1.6%
airplane | 512 x 512 | 1710 | 0.8% | 1704 | 1.1% | 1680 | 1.6%
barbara 512 x 512 | 1722 | 0.8% | 1716 | 1.1% | 1709 | 1.6%
bay 256 x 256 | 1594 | 3.0% | 1556 | 4.0% | 1471 | 5.6%
bird 256 x 256 | 1895 | 3.6% | 1830 | 4.7% | 1717 | 6.6%
boat 512 x 512 | 1841 | 0.9% | 1835 | 1.2% | 1805 | 1.7%
bridge 256 x 256 | 1509 | 2.9% | 1487 | 3.8% | 1478 | 5.7%
camera 256 x 256 | 1752 | 3.3% | 1724 | 4.4% | 1656 | 6.3%
couple 512 x 512 | 1634 | 0.8% | 1624 | 1.1% | 1617 | 1.6%
crowd 512 x 512 | 1674 | 0.8% | 1670 | 1.1% | 1670 | 1.6%
festung 512 x 512 | 1770 | 0.8% | 1744 | 1.1% | 1720 | 1.6%
goldhill 512 x 512 | 1741 | 0.8% | 1729 | 1.1% | 1726 | 1.6%
io 512 x 512 | 1730 | 0.8% | 1724 | 1.1% | 1720 | 1.6%
lax 512 x 512 | 1561 | 0.7% | 1561 | 1.0% | 15635 | 1.4%
lena 512 x 512 | 1684 | 0.8% | 1676 | 1.1% | 1670 | 1.6%
man 512 x 512 | 1570 | 0.7% | 1566 | 1.0% | 1566 | 1.5%
mandrill | 512 x 512 | 1533 | 0.7% | 1516 | 1.0% | 1510 | 1.4%
peppers | 512 x 512 | 1647 | 0.8% | 1647 | 1.0% | 1647 | 1.6%
sailboat 512 x 512 | 1748 | 0.8% | 1741 | 1.1% | 1734 | 1.7%
shepherd | 512 x 512 | 1596 | 0.8% | 1596 | 1.0% | 1590 | 1.5%
sunset 256 x 256 | 1769 | 3.4% | 1761 | 4.5% | 1723 | 6.6%
washsat 512 x 512 | 1435 | 0.7% | 1435 | 0.9% | 1435 | 1.4%
womanl | 512 x 512 | 1658 | 0.8% | 16567 | 1.1% | 1651 | 1.6%
woman?2 512 x 512 | 1884 | 0.9% | 1884 | 1.2% | 1883 | 1.8%
zelda 512 x 512 | 1808 | 0.9% | 1808 | 1.2% | 1805 | 1.7%

Theorem 5 Let m be the number of sorting passes performed by the encoder, including the last

one that may not be completed. Then, the size of the important part is at most 496m + 240 bits.

Furthermore, the size of the important part is at least 160 bits if at least two sorting passes are

performed.

In most cases, 6 to 10 sorting passes are performed when the images are compressed at 0.80 bpp,

giving an upper bound of 5200 bits on the important part. In practice, the actual size of the

important part is usually much smaller. Table 3 shows the results obtained at various bit rates.

The size of the important part is less than 2% of the total output for each image of dimensions

512 x 512, and less than 7% for each image of dimensions 256 x 256.

Without thessignificancesinformation of the two highest pyramid levels, the initial changes to

23

www.manaraa.com

the three lists LIS, LIP, and LSP are not known. By Theorem 5, at least 160 bits of significance
information must be known to correctly decode the image. Thus, an exhaustive search would
require testing at least 2160 possibilities. The embedded nature of the algorithm may allow fewer
bits to be used to construct a low-quality approximation, but experiments show that at least 160
bits of the important part must be known to give a very coarse approximation. Figure 9 shows
the experimental results on the “lena” image. Furthermore, it is difficult to distinguish the correct
important part from the incorrect ones when the original image is unknown.

It is difficult to cryptanalyze this partial encryption scheme for several reasons:

1. The unimportant part contains different types of bits that are mixed together. Without the

significance information, one type of bits cannot be distinguished from another.

2. The bit at which a sorting pass or a refinement pass starts in the unimportant part is difficult

to locate. It is difficult to identify the step at which each bit is produced in the algorithm.

3. The order in which the coeflicients are examined in the refinement pass depends on the state
of the LSP. If the initial updates to the LSP are not known, it is difficult to determine the

order in which the coeflicients are refined.

4. There is a many-to-many relationship between the important part and the unimportant part.
Given an important part, there are many unimportant parts that match with it. Namely, we
may change the signs and all but the most significant bit of the coefficients and obtain the
same important part. On the other hand, we may generate multiple important parts that

match a given unimportant part by translating the significant branches.

5. The important parts of two similar images may be dramatically different. Substituting the
important part of one image into another does not give a meaningful approximation of the

original image.

It is straightforward to add our partial encryption scheme to the SPIHT algorithm. We simply
perform an additional comparison before each significance bit is transmitted. The comparison is
performed on the coordinates (¢, j) to determine whether the significance information is encrypted.
In our experiments, we have not been able to detect any increase in running time due to the

additional comparisons.

24

www.manaraa.com

(a) Original image (b) k£ = 100

(c) k =120 (d) k =140

(e) k = 160 (f) k =180

Figure 9: Reconstructed images using only the first k encrypted bits.

25

www.manharaa.com

6 Partial Encryption of Videos

We now give extensions of the partial encryption schemes for videos. Video compression algorithms
generally consist of two parts—motion compensation and residual error coding, which will be
examined separately. It is assumed that one of the partial encryption schemes for images introduced
in Section 5 is used for intraframe coding. We have already seen in Section 5 that quadtree-
based partial encryption is secure against tree enumeration attacks even when the images have low
resolution, and that the image resolutions has little effect on the security of zerotree-based partial
encryption schemes. As a result, both schemes are suitable for low-resolution video applications
such as “videophones.”

The motion vectors must be encrypted. Otherwise, an image frame may be used to provide
approximations to successive frames. This is especially important if encryption is activated after
the video transmission has started, so that the initial frames are available to the cryptanalysts.
Typical motion compensation algorithms divide the current frame into blocks of fixed size, and
compute a motion vector for each block. However, multiple blocks belonging to the same object
may have identical or similar motion vectors, and it may be more efficient to code these motion
vectors together. Schuster and Katsaggelos [27] proposed an algorithm that computes the motion
vectors for fixed-sized blocks and merges the blocks using a quadtree. The dimensions of the initial
blocks are usually 8 x 8, so that an image frame of 2" x 2" has a quadtree of maximum height
n — 3. Quadtree partial encryption for images can be adapted to encode motion vectors. The leaf
values are the motion vectors instead of image intensities. As in the case of images, the quadtree
decomposition is encrypted while the motion vectors are not. Instead of using a Hilbert curve to
encode the motion vectors as in [27], we encode the motion vectors one level at a time using Leaf
Ordering II. Although the maximum height of the quadtree is reduced, we have seen in Section 5
that the number of possible quadtrees remains large for videos having medium or high resolutions.
For low-resolution videos, the maximum height of the quadtree may be small enough to make
exhaustive tree enumeration feasible. In that case, the motion vectors are completely encrypted.

The residual error often provides outlines of moving objects that are not perfectly predicted
by the motion vectors, as shown in Figure 10. As a result, it is insufficient to encrypt only the

intraframes and the motion vectors; the residual error must also be encrypted to provide security.

26

www.manaraa.com

Figure 10: Residual error (after contrast enhancement) for frame 2 of the “claire” sequence.

Since the residual error is simply an image frame, many video compression algorithms use standard
image compression algorithms to compress the residual error. Both quadtree compression [27,
30, 32] and wavelet compression [19] have been used in video compression algorithms for residual
error coding. Strobach [30] suggested that quadtree compression is appropriate for residual error
coding as the residual error often contains high intensities concentrated around the edges of objects.
Wayvelet compression is also appropriate because of its excellent compression performance on images.
Partial encryption schemes for both quadtree and wavelet image compression can be applied directly
to residual error coding.

The relative size of the quadtree of motion vectors can be predicted from the number of bits
used to represent each motion vector. For example, if each motion vector is represented by 6 bits,
the quadtree is at most 18.2% (Table 1) of the total output produced by the motion compensation
step. The relative size of the important part of the residual error is similar to the case of image
compression. The results on two test video sequences are shown in Table 4. Each frame in the
“football” sequence has dimensions 720 x 496, and each frame in the “claire” sequence has dimen-
sions 360 x 288. In these experiments, motion compensation is performed on blocks of dimensions
8 X 8 initially. Only the results for the first ten frames of each video are shown for each video as
the results are similar for other frames. The relative sizes of the important parts in the quadtree
partial encryption scheme are slightly larger than those in the case of still image compression. This
occurs because most of the magnitudes of the residual error image are small when the prediction
by the motion vectors is accurate. Therefore, the variance of the leaf values is small, so that the
number of bits used to represent each leaf value is small. The size of the important part in SPIHT

partial encryption is similar to the case of still image compression. Since it is difficult to precisely

27

www.manaraa.com

Table 4: The size of important part of the residual error for the test video sequences.

football claire
Quadtree SPIHT Quadtree SPIHT
Frame | Bytes % Bytes | % | Bytes % Bytes | %
2 1808 | 28.8% | 146 | 0.6% 90 27.0% | 141 | 2.2%
3 2232 | 29.6% 140 | 0.5% | 162 | 26.0% 141 2.2%
4 2124 | 29.0% 143 | 0.5% | 201 26.7% 140 | 2.1%
5 2270 | 27.4% | 152 | 0.6% | 190 | 28.0% | 156 | 2.4%
6 2425 | 27.8% 149 | 0.6% | 212 | 26.9% 141 2.2%
7 2459 | 28.1% 144 | 0.5% | 211 28.5% 137 | 2.1%
8 2473 | 24.0% 135 | 0.5% | 226 | 28.8% 140 | 2.1%
9 2365 | 27.5% | 133 | 0.5% | 224 |30.7% | 140 | 2.1%
10 2646 | 27.9% | 137 | 0.5% | 256 |28.0% | 136 | 2.1%

control the bit rate of the quadtree compression algorithm, the results obtained for quadtree partial
encryption and SPIHT partial encryption are not directly comparable.

Large homogeneous regions exist in both the motion vectors and the residual error. The motion
vectors for the blocks belonging to the same object tend to be identical or similar, and all static
objects have the same motion vector—the zero vector. In the case of the residual error, large regions
of small magnitudes exist when the prediction by motion compensation is accurate. It is important
to ensure that the partial encryption schemes for both motion vectors coding and residual error
coding are secure even if there are large homogeneous regions. In Section 5, we saw that large
homogeneous regions may produce long runs in quadtree partial encryption if Leaf Ordering I is
used. Consequently, it is critical that Leaf Ordering II is used in quadtree partial encryption of
videos. In the case of SPIHT partial encryption on the residual error, cryptanalysis is not facilitated
by large homogeneous regions. It is still difficult to correctly decode the image frame without the
initial updates to the internal states of the algorithm. It is possible for the residual error to have
very few large intensities, and this can be detected in both quadtree partial encryption and SPIHT
partial encryption. However, this implies that the motion compensation is accurate; the current
frame cannot be reconstructed without the motion vectors and the previous frame. Note that a
cryptanalyst cannot infer from this information that there is little or no motion in the video. It
is possible for motion compensation to be very successful even when there is a large amount of

motion in the video.

28

www.manaraa.com

Figure 11: Sensitivity of quadtrees to the placement of a moving object.

The security of the partial encryption schemes for video depends not only on the security of
the corresponding schemes for images, but also on the inability of a cryptanalyst to take advantage
of the temporal correlation among consecutive frames. Experiments have shown that although
the motion vectors and the residual error are often predictable from those of the previous frames,
much of the correlation among consecutive frames is lost in both the important part and the
unimportant part. In the case of motion vectors coding, the quadtrees of consecutive frames are
drastically different because they are highly sensitive to the placement of the moving objects [30],
which is illustrated in Figure 11. Similarly, the quadtrees for residual coding differ significantly
among consecutive frames. When SPIHT partial encryption is used for residual error coding, the
algorithm produces drastically different outputs for consecutive frames because the zerotrees, like
quadtrees, are highly sensitive to the placement of moving objects in the residual error.

The overhead of separating the important part from the unimportant part is negligible as
in the case of image compression. Since quadtree compression is used for encoding the motion
vectors, a similar version can also be used to perform residual error coding if we wish to reduce
implementation time or program size. Furthermore, the encryption of the important part can be
performed in parallel to the transmission of the unimportant part. Consequently, the encryption

time may become negligible despite the large amount of data transmitted.

7 Conclusion

In this paper, we proposed an approach, called partial encryption, to reduce the encryption and
decryption time in image and video communication and processing. For both images and videos,

the processing time for encryption and decryption is significantly reduced. Partial encryption is

29

www.manaraa.com

feasible because it can easily be implemented and is computationally simple. We conclude that
partial encryption is useful in reducing the encryption and decryption time in secure image and
video communication and processing.

The main limitation of our approach is that a different scheme has to be designed and analyzed
for each compression algorithm. One possibility for future research is to identify the key elements
of partial encryption to obtain general techniques for the design and analysis of partial encryption
schemes. It appears that the important parts are often those that “drive” the decompression
algorithm. In other words, the branch of execution of the decompression algorithm depends on the
important parts. It is perhaps useful to examine important parts from this perspective. Another
possibility is to examine the applicability of partial encryption to other region-based compression

algorithms that also use tree structures to store the locations and shapes of the regions.

References

[1] M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. Image coding using wavelet trans-
form. IEEE Trans. Image Processing, 1(2):205-220, Apr 1992.

[2] M. Bertilsson, E. F. Brickell, and I. Ingemarsson. Cryptanalysis of video encryption based on
space-filling curves. In FUROCRYPT ’89, pages 403—-411, 1990.

[3] N. Bourbakis and C. Alexopoulos. Picture data encryption using scan patterns. Pattern
Recognition, 25(6):567-581, 1992.

[4] H. K.-C. Chang and J.-L. Liu. A linear quadtree compression scheme for image encryption.
Signal Processing: Image Communication, 10(4):279-290, Sep 1997.

[65] H. Cheng. Partial encryption for image and video communication. Master’s thesis, Univ. of

Alberta, 1998.

[6] H. Cheng and X. Li. On the application of image decomposition to image compression and
encryption. In Communications and Multimedia Security II, pages 116127, 1996.

[7] C. D. Creusere. A new method of robust image compression based on the embedded zerotree
wavelet algorithm. IEEE Trans. Image Processing, 6(10):1436-1442, Oct 1997.

[8] E. A. B. da Silva, D. G. Sampson, and M. Ghanbari. A successive approximation vector
quantizer for wavelet transform image coding. IEEE Trans. Image Processing, 5(2):299-310,
Feb 1996.

[9] N. G. de Bruijn, D. E. Knuth, and S. O. Rice. The average height of planted plane trees. In
R. C. Read, editor, Graph Theory and Computing, pages 15-22. Academic Press, 1972.

[10] D. A. Huffman. A method for the construction of minimum-redundancy codes. Proc. IRE,
40(2):1098-1101, Sep 1952.

30

www.manaraa.com

[11] D. Jones. Data compression and encryption algorithms. World Wide Web.
http://www.cs.uiowa.edu/" jones/compress/.

[12] D. Jones. Applications of splay trees to data compression. Commun. ACM, pages 996-1007,
Aug 1988.

[13] J. Knipe. A comparison of improved spatial and transform domain compression schemes.
Master’s thesis, Univ. of Alberta, 1996.

[14] J. Knipe, X. Li, and B. Han. An improved lattice vector quantization based scheme for wavelet
compression. IEEE Trans. Signal Processing, 46(1):239-243, Jan 1998.

[15] D. E. Knuth. The Art of Computer Programming: Fundamental Algorithms, volume 1.
Addison-Wesley, 3rd edition, 1997.

[16] X. Lai. On the Design and Security of Block Ciphers, volume 1. Konstanz: Hartung-Gorre
Verlag, 1992.

[17] X. Li, J. Knipe, and H. Cheng. Image compression and encryption using tree structures.
Pattern Recognition Letters, 18(11-13):1253-1259, Nov 1997.

[18] X. Liu, P. G. Farrell, and C. A. Boyd. Resisting the Bergen-Hogan attack on adaptive arith-
metic coding. In Cryptography and Coding: 6th IMA Intl. Conf., pages 199-208, 1997.

[19] S. A. Martucci, . Sodagar, T. Chiang, and Y.-Q. Zhang. A zerotree wavelet video coder. IEEE
Trans. Circ. and Syst. for Video Technol., 7(1):109-118, Feb 1997.

[20] Y. Matias and A. Shamir. A video scrambling technique based on space filling curves. In
CRYPTO ’87, pages 398-417, 1988.

[21] J. L. Mitchell, W. B. Pennebaker, C. E. Fogg, and D. J. LeGall. MPEG Video: Compression
Standard. Chapman & Hall, 1996.

22| J. Modayil, H. Cheng, and X. Li. Experiments in simple one-dimensional lossy image com-
g g
pression schemes. In Proc. IEEFE Intl. Conf. on Multimedia Comp. and Syst., pages 614615,
1997.

[23] J. Modayil, H. Cheng, and X. Li. An improved piecewise approximation algorithm for image
compression. Pattern Recognition, 31(8):1179-1190, Aug 1998.

[24] W. B. Pennebaker and J. L. Mitchell. JPEG Still Image Data Compression Standard. Van
Nostrand Reinhold, 1993.

[25] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digitial signatures and public
key cryptosystems. Commun. ACM, 21(2):120-126, 1978.

[26] A. Said and W. A. Pearlman. A new, fast, and efficient image codec based on set partitioning
in hierarchical trees. IEEE Trans. Circ. and Syst. for Video Technol., 6(3):243-250, Jun 1996.

[27] G. M. Schuster and A. K. Katsaggelos. Rate-Distortion Based Video Compression: Optimal
Video Frame Compression and Object Boundary Encoding. Kluwer Academic Publishers, 1997.

[28] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans.
Signal-Processingy41(12):3445-3462, Dec 1993.

31

www.manaraa.com

[29] E. Shusterman and M. Feder. Image compression via improved quadtree decomposition algo-
rithms. IEEE Trans. Image Processing, 3(2):207-215, Mar 1994.

[30] P. Strobach. Tree-structured scene adaptive coder. IEEE Trans. Commun., 38(4):477-486,
Apr 1990.

[31] P. Strobach. Quadtree-structured recursive plane decomposition coding of images. IEEE
Trans. Signal Processing, 39(6):1380-1397, Jun 1991.

[32] G. J. Sullivan and R. L. Baker. Efficient quadtree coding of images and video. IEEE Trans.
Image Processing, 3(3):327-331, May 1994.

[33] E. Walach and E. Karnin. A fractal based approach to image compression. In IFFF Intl.
Conf. on Acoust., Speech Signal Processing, volume 1, pages 529-532, Apr 1986.

[34] 1. H. Witten, R. Neal, and J. G. Cleary. Arithmetic coding for data compression. Commun.
ACM, 30:520-540, Jun 1987.

32

www.manaraa.com

List of Figures

1 A comparison between (a) the traditional approach to secure image and video com-

munication and (b) the proposed approach. 5
2 A comparison between (a) the traditional approach to secure image and video com-

munication and (b) the proposed approach when public-key encryption can be ap-

plied directly to the important part. o oo, 6
3 The hierarchy of wavelet coefficient bands. o000, 9
4 The trees of wavelet coefficients. o oL 10
5 Quadtree decomposition of animage. Lo oL 14
6 An example quadtree for a binary image. L o 0oL, 15
7 Plots of log, ay j, for various valuesof A. 19
8 A quadtree with arun of length 14. oo oo 20
9 Reconstructed images using only the first k encrypted bits. 25
10 Residual error (after contrast enhancement) for frame 2 of the “claire” sequence. . . 27
11 Sensitivity of quadtrees to the placement of a moving object. 29

List of Tables

1 Approximate upper bounds on the relative quadtree size in lossless quadtree com-
pression on b-bit images. L Lo 17
2 Relative quadtree size in lossy quadtree compression. 18
3 The size of important part in the SPIHT algorithm. 23
4 The size of important part of the residual error for the test video sequences. 28
33

www.manaraa.com

